Exposure to Pesticides

Exposure to Pesticides and Health Effects on Farm Owners and Workers From Conventional and Organic Agricultural Farms in Costa Rica: Protocol for a Cross-Sectional Study

Authors: Fuhrimann S, Winkler MS, Staudacher P, Weiss FT, Stamm C, Eggen RI, Lindh CH, Menezes-Filho JA, Baker JM, Ramírez-Muñoz F, Gutiérrez-Vargas R, Mora AM

BACKGROUND:

Pesticide use is increasing in low- and middle-income countries (LMICs) including Costa Rica. This increase poses health risks to farm owners, farm workers, and communities living near agricultural farms.

OBJECTIVE:

We aimed to examine the health effects associated with occupational pesticide exposure in farm owners and workers from conventional and organic smallholder farms in Costa Rica.

METHOD:

We conducted a cross-sectional study involving 300 owners and workers from organic and conventional horticultural smallholder farms in Zarcero County, Costa Rica. During the baseline study visit, we administered a structured, tablet-based questionnaire to collect data on sociodemographic characteristics, pesticide exposure, and health conditions (eg, respiratory and allergic outcomes and acute pesticide intoxication symptoms) and administered a neurobehavioral test battery (eg, Finger Tapping Test and Purdue Pegboard); we measured blood pressure, anthropometry (height, weight, and waist circumference), and erythrocytic acetylcholinesterase activity and also collected urine samples. In addition, a functional neuroimaging assessment using near-infrared spectroscopy was conducted with a subset of 50 study participants. During the follow-up study visit (~2-4 weeks after the baseline), we administered participants a short questionnaire on recent pesticide exposure and farming practices and collected hair, toenail, and urine samples. Urine samples will be analyzed for various pesticide metabolites, whereas toenails and hair will be analyzed for manganese (Mn), a biomarker of exposure to Mn-containing fungicides. Self-reported pesticide exposure data will be used to develop exposure intensity scores using an exposure algorithm. Furthermore, exposure-outcome associations will be examined using linear and logistic mixed-effects regression models.

RESULTS:

Fieldwork for our study was conducted between May 2016 and August 2016. In total, 113 farm owners and 187 workers from 9 organic and 83 conventional horticultural smallholder farms were enrolled. Data analyses are ongoing and expected to be published between 2019 and 2020.